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2~ and 3~ exact shock wave solutions with specular reflection to 
the discrete Boltzmann models 

Henri Cornille 
Service de Physique Theorique de Saclay+, F-91191 Cif-sur-Yvette Cedex, France 

Received 2 May 1989 

Abstract. We construct exact solutions which are ?U (two spatial coordinates) for the four 
velocity planar model, 313 for the cubic Broadwell models and p-dimensional for the 
p-dimensional hypercubic discrete Boltzmann model. These solutions are shock waves 
which satisfy a specular reflection boundary condition at a wall. 

1. Introduction 

For the discrete Boltzmann models [1]$ the velocity can only take discrete values 
U,, \U,] = 1, i = 1. . . . ,2p. To each velocity U, is associated a density N,.  Recently 
(2 + l)-dimensionaI solutions [2] (two spatial coordinates plus time) have been con- 
structed for three models: the planar 4u, model, the cubic Broadwell model and a 
generalised p-dimensional hypercubic model. 

Here, in addition we introduce boundary conditions: namely specular reflection at 
a wall. For the 4u, model we obtain ZD solutions and for the Broadwell 3 ~ .  We 
emphasise that for the first time exact solutions are constructed to the discrete 
Boltzmann models with three independent spatial coordinates. However, the time 
dependence is simple and corresponds to a translation of the initial-values patterns. 
As usual the solutions are sums of similarity shock waves [3]. 

In  9 2 we study the 4u, model and in 9 3 the Broadwell model. In  9 4 we introduce 
the hypercubic p-dimensional model, which for p = 2,3 is reduced to the previous 
models, and we construct p-dimensional exact solutions. 

2. 2~ solutions for the 4ui planar model 

For this model, with four velocities U, + u2 = U) + u4 = 0, U,, u3 lying along the x, and 
x2 positive axes respectively, the equations for the four densities N,  are 

(2.1) NI I + NI,, = Nzr - NZX, = - N,, - N,, ,  = - N41 i- N4\., = N3 N4 - NI N ,  . 
We start with an ansatz: 

+ Laboratoire de I'lnstitut de Recherche Fondamentale du Commissariat a I'Energie Atomique. 
f Note that only models with more than 20, can lead to multidimensional solutions. 
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The conditions N I  = N , ,  N z  = N4 for a specular reflection at a wall xI = x2 are satisfied. 
Substituting (2.2) into (2.1) we write down the relations for the coefficients of Dy' ,  0;': 

n , p = - n , ( p + y ) = n , ( - p + y ) = n , n , -  n f =  n o , ( n l  -n,)+n,,,(n, - n 7 ) .  (2.3) 

In the collision term of (2.1) the constant and the terms proportional to (DIDz)- '  are 
identically zero. We have seven parameters n,, no,, p, y and four relations, leaving 
three arbitrary parameters. The frequency p and wavenumber y can be obtained from 
the n, which satisfy a closed relation: 

Y = p ( n 4 - n , ) / ( n 4 + n 7 )  p = - n ,  + n,n,/n,  -2n,n, = n ,  ( n ,  + n4). (2.4) 

For the construction of the solutions we define intermediate parameters ii, = 
n , / n ,  , i = 3,4.  We choose for the arbitrary parameters 

s = ti, + r i d >  0 no, > 0 no, > 0 (2.5) 

from which we will construct all others. From (2.4) 2f i?&= -S ,  and it follows that 
the ri, are known: 

2ii7 = s + m >  0 2 f i 4 = s - m 3 T 3 < o .  (2.6) 
n, is found from the last relation of (2.3): 

2 
n ,  =- [n , , ( f i4-1)+no,( i i , -1) l .  

( S + 2 )  

Finally from i i,, n , ,  which are functions of S, n o , ,  no', we obtain n, = i i ,n, ,  i = 3,4, p 
and y. 

Physically relevant densities must  be positive. It is sufficient that positivity holds 
for the asymptotic shock limits at t = 0 in the xI , xz plane. These limits are plateaus 
in the xl. x2 coordinate plane and four for each density. However, the plateaus for 
NI,  N3 and N,, N4 being the same, only eight are independent: 

no, E l l  = nol + n ,  
(2.8) 

no2 L, = no>+ n ,  
Let us assume that all these limits are positive (or at least non-negative); then, for 
instance, 

NI D ,  4 = Y l Y * ~ ~ l l  + Y 2 Z l 3  + Y l ~ l  I +Ell3 > 0 (2.8') 

It remains to find the domain of the arbitrary parameter space leading to E ,  > 0. We 
rewrite these limits with the arbitrary parameters: 

Cl ,  = no, + n3 

E:24 = no2 + n4 

x l 1 3  = no, + n ,  + n3 

E214 = no?+ n ,  + n4. 

y ,  = d exp(pr + yx,)  > 0. 

1 = n l ( n 0 2  - ~ l ~ = R l ( n o z f i 7 - n n , l l )  

&4 = R2(n02  - fidnol 1 
C l ,  = 2( n7 - I ) / (  S+ 2)  

E?, = C12(n,,ii7 - n o l )  

X l 1 3  = Cl3[nnI(fi4- i i j ) +  no2(fi:- I ) ]  

2 2 1 4  = R3[ nol(ri:- 1) + nor( f i l  - n4)] 

n, = 2 (  1 - fi,)/(S+2) 

R , = 2 / ( S + 2 ) > 0  A , > O  n4<o 
(2.9) 

Lemma 1. All Z,>O if S > 2 / 3  and i f  n o r > n , ~ , s u p ( E , = 1 / i i 3 , E z = ( ~ l - f i , ) / ( i i ~ - 1 ) ,  
E 3 = ( 1 - f i : ) / ( i i 3 - f i , ) ) .  

First we notice from (2.6) that i i i 41<  1 and f i3>  1 if S >  2/3. I t  follows that 
0, > 0, Cl2> 0, B 2 > 0 ,  B 3 >  0, X l l  > Oand E,, > Oif n O 2 >  n , , / f i , .  Further wefindX,, ,> 0 
if no,> B,n,, and E2, ,>0 i f  no,> E3no, .  



2~ a n d  .TO shock waues to discrete Boltzmann models 4789 

Lemma 2. If S > 2 /3  then B2 > E , ,  E? > B 3 .  

(21- S)’/4( ii, - ti4)( i i: - 1 )  and we deduce the following theorem. 
This follows from B2 - E ,  = ( S  + 2)/25,(  5 ;  - 1)  > 0 and  B2 - E ,  = 

Theorem. All N ,  are positive if S >  ? / 3 ,  n,,, > 0 and if n,,,/n,,, > ( ti3 - i i ,)/( 5: - l ) ,  the 
lower bound being S dependent. 

Next we introduce the total mass M = C  N ,  which from (2.1.7) can be written 

M = m,,+ m (  1/ D ,  + 1/ D z )  

m = n , ( 2  + S )  = 2[ n,,,( fi4 - 1) + no?( f i3 - I ) ]  = -2p. 

mo = 2 ( n , , ,  + n,J 
(2.10) 

We find m S 0 if no2 S n,, B4, E,  = (1 - &)/ (  i3 - 1) > B 2 .  It follows that m, p, y = 
- p J ( S + 2 ) / S  can be positive or negative but m, y have the same sign and p the 
opposite one. For the shock speed c = p /  y we find I C /  < 1. The time dependence is 
very simple. At fixed time t 

( 2 . 1 1 )  

corresponds in the coordinate x , ,  x2 plane to a translation ct of the initial data. The 
construction at fixed t of the equidensity lines M ( x , ,  x2;  r )  =constant = C in the x , ,  x2 
plane is easy and we find for x2 as a simple function of x, : 

M ( x , ,  x,; t )  = M ( x ,  + ct, xz+ ct ; 0 )  c = P / Y  

d = d exp(pt)  
1 m 

Y 
x2 = - log [+( -1 + c - M O -  m [ l  + d  exp( y x , ) ] - ’  

where the square bracket must be positive. In the x , ,  x2 plane the four asymptotic 
plateaus (three for both domains at the right and at the left of the wall x, = x2) are 
m,, m,+ m (twice) and m0+2m. I f  m < 0 (or p > 0) the upstream plateau is the Max- 
wellian m,, while the downstream one is m0+2m, and the converse if m > 0 ( p  < 0). 

no1 = 1 no2 = 2 S = l  d = l  (2.12) 

As illustration, we choose the simple example in figure 1: 

from which we deduce: 

25, = 1 *a n ,  = - 1  + I / &  a n ,  = -1 n 4 = - 1 + 2 / J 3  

mo= 6 m=&-3<O m 0 + 2 m = 2 A  m , , + m = 3 + d .  

All C i  are positive except C,  ,, = 0, but from (2.8’) we see that N ,  3 0 does not violate 
positivity. In figure l ( a )  we present the M equidensity lines at t = 0 .  The arrays 
represent decreasing equidensity lines. The upstream plateau m, = 6 ,  due  to p > 0, is 
also the Maxwellian one. The downstream plateau is m,+ 2m = 2 d  and we observe 
the two intermediate plateaus m, + m = 3 + a. The equidensity lines are perpendicuar 
to the wall x, = x2 and they are symmetric with respect to the wall. Along any profile 
parallel to the wall we observe the shock domain between upstream and downstream 
plateau. We see one shock in figure l ( c )  along the wall x, = x2 while at  some distance 
x2 = xI - 15 from the wall such profiles exhibit a double shock with m,+ m as an  
intermediate plateau. Along profiles parallel either to the xI axis or x2 axis we observe 
a simple shock either from m,, toward m o + m  or from m,+m toward m,+2m. In 
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M~xl.x,=x,-15,t 1 >;\.,y  mi- 
m o m  

2 m  Figure 1. Illustration of the 4u, model. ( a )  
2 6  Equidensity lines at t = 0, M ( x , ,  x2 ; t = 0 )  = 

- 5  0 5 10 15 20 25 M ( x , , x , ;  r=lO)=constant .  In both ( a )  and ( b )  
E = IO-'. ( c )  Shock profiles with one and two shocks 
connecting two and three plateaus, respectively. 

I I I I I 1 I constant. ( b )  Equidensity lines at I = 10, 

X1 

( C  i 

figure l(b, c, d )  for the equidensity M lines at  t = 10, we observe a translation -ct  = 
lo/& of the t = 0 profiles. This can be interpreted by the fact that the Maxwellian 
plateau m, = 6 spreads out when the time increases. 

Strictly speaking the equidensity lines M = m,+ m, with the (2.12) choice d = 1, 
are provided by the lines x , + x 2 + 2 c t = 0 .  However, the SM increment for large Ixil 
is very small around that line. In figure l(a, b), in order to figure out the m,+m 
plateaus, we present equidensity lines either between mo+m--s and m,+2m or 
between m O + m + E  and m, with the same increment 6 M  for both sets. We choose 
E = and between the two sets the shift is 2.5 # SM. 

3. 3~ solutions for the 6ui cubic Broadwell model 

For this model with six velocities U ,  + u2 = u3 + u4 = us + u6 = 0,  U,, uj, us lying along the 
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xI, x2 ,  x3 positive axes respectively, the equations for the six densities NI are 

N1:+Nl, ,= Nz,-Nz, ,= N?Nq+NsN6-2NiNz 

N3: + NTT2 = N4: - N4rI = N5 N6 + NI N ,  - 2 N3 N4 (3 .1 )  

N5: + Ns,, = N6r - N6rl = - N I ,  - NI , ,  - N 3 i  - N3'r2* 

We start with an ansatz which is an obvious generalisation of (2 .2):  

The conditions N I  = N,, N2 = N4 for a specular reflection at a plane wall x, = x2 are 
satisfied (notice that u5 and 0 6  being parallel to the wall, no conditions on N,, N6 
occur). Substituting (3.2) into (3 .1)  we first write down the relations for the coefficients 
of D;' ,  D;': 

(3.3a) 

Again, the constants in the collision terms of (3.1) are identically zero, but the 
coefficients of ( D ~ D J ' ,  p z q, give a new relation 

n,+n6=2n, .  (3.36) 

We still have seven parameters n,, no,, p, y but here five relations, leaving only two 
arbitrary parameters. Frequency p and wavenumber y are still deduced from the n, 
which satisfy a closed second relation: 

Y = P(n6- ns) /2n,  p = -3n, n5n6 = -2n:. (3.4) 

For the construction of the solutions we again define intermediate parameters 
and for the 

(3.5) 

A, = n,/ n ,  , i = 5,6,  and find ri, = 1 * d. We choose A, = 1 +a, ii6 = 1 - 
arbitrary parameters 

no, > no, > 0. 

We reconstruct easily all parameters from no,, i = 1,2:  

A n ,  = no, - no, > o 
A n 6  = (1  - A ) ( n o 2 -  no,)  < o 
y = - A p > O  c = p /  y =  - l / A  IC1 < 1 .  

A n ,  = ( 1  +&)(no, - no,) > o 
p = &(no, - no2) < o (3.6) 

For the positivity of the densities N,  we remark that they are sums of positive terms 
except for the N, ,  i even, containing one negative term proportional to n6. For the 
even densities we find positive lower bounds: 

N,  > no* + n6/ D, 2 no, + n6 = ( nO2 + (A - 1 1 no, )la > 0 ( i , j )  = ( 2 , 1 ) ,  (4 ,3) ,  (6 -1 ) .  
(3.7) 
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In the following we introduce the total mass M = Z N ,  : 

m,, = 3( n,,, + nor)  > 0 
3 

M = m , , + m ~ l / D ,  

m = 6 n l  = 2&(n,,-  n,,,) > 0 
0, = 1 + d exp[3( no2 - nlll)(x,  - t /d?)] .  

1 

(3.8) 

In  the three-dimensional space there exist eight sectors defined by the different signs 
of each coordinate; for instance, x,  > 0, x2 > 0, x3 > 0, and so on. In these sectors exist 
asymptotic limits when lx,l--* cc, j = 1,2,3,  which are volumes and which replace the 
plateaus of the previous two-dimensional shock waves. There exist eight asymptotic 
values: m,, m,+ m (three times), m,+2m (three times) and mo+3m. Due to m > 0 
the highest asymptotic value is mo+3m in the upstream domain while the lowest one 
is m, in the downstream domain. Since p CO, the Maxwellian corresponds to the 
mo+3m asymptotic limit. Here also the time dependence 

M ( x ,  , x2,  x3 ; t )  = M (  x, + ct, x2+  ct, x3 + ct ; 0) 
corresponds in the x , ,  x2,  x3 space to a translation of the initial t = 0 data. Here also 
the construction of the equidensity lines M ( x , ,  x?,  x,; t )  =constant = C (at fixed t )  is 
simple and x3 is a function of x, and x2:  

d = d exp(pt)  (3.9) 
1 m 
Y C - m , - m ~ ~ [ l + d e x p ( ~ x , ) ] - '  

x, =-log [ +( -1 + 
where the square bracket must be positive. 

The present class of solutions (3.2) satisfies a specular reflection boundary condition 
NI = N ,  , N2 = N4 at a planar wall x,  = x2 as well as specular reflection NI = N 5 ,  N2 = N6 
at a wall x, = x, or specular reflection N ,  = N, ,  N4 = N b  at a wall x3 = x2. Further 
along the line x,  = x, = x j  we have NI = N3 = N 5  and N4 = Nh = N 2 .  

As an illustration, in figure 2, we present an example with no, = 1, no, = 2 ,  d = 1 
from which we deduce 

a n ,  = 1 n5 = 1 + I / &  n 6 = - 1 + 1 / &  
p = - J 3 < 0  y = 3 > 0  c&= -1 
m,=9 m = 2 & > 0  9 s  M < 9 + 6 & .  

The M =constant equidensity lines are now surfaces in the three-dimensional x , ,  x2,  x3 
space. On a plane we cannot, as was possible in § 2 for the flow of curves M =constant, 
draw the flow of such surfaces when the constants M are varying. So we choose 
sections in the space which are either parallel to the wall x2 = x, or perpendicular. 

In figure 2(a),  at r = 0 ,  we present the M =constant lines inside the wall x 2 = x I .  
In such sections of the space, the asymptotic values m,+jm, j = 0,1,2,3,  become 
plateaus. We observe the downstream plateau m,, the upstream plateau m,+ 3m (which 
due to p < 0 is also the Maxwellian plateau) and the two intermediate m,+ m , ,  mo+2m 
plateaus. In this section the two intermediate plateaus are separated by the shock 
domains which are two strips parallel either to the x ,  axis or to the x3 axis. Profiles 
parallel to x3 (or x I )  link two plateaus separated by one shock. On the contrary in 
figure 2(6), at t = 0, for a section x2 = x I  + 3 parallel to the wall, the strip parallel to 
the x3 axis is divided in three different parts; two for x,>O and two for x,<O. 
Consequently profiles parallel to x1 connect three plateaus with two different shocks. 
In figure 2(c)  we present shock profiles with one, two or three shocks connecting two, 
three or four plateaus. 
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1.2 1 \ IIIIIIIRIIIIII \ 

- 6  -4  -2  0 2 4 
X1 

(01 

--,9 M i x  x - x . x  - z  f 1’ 2 -  1 3- 1’ ’ 
\ 
\ -Al5 \\ k 1 0  

M ( W, , x2 = x1 t3, x; :  A‘?, - 6 ; t I 

\ f.10 

\------ 

\ Figure 2. Illustration of the Broadwell model. ( a )  
Equidensity lines at f = O  inside the wall x2 = x,  , 
M(x ,  = x2,  x,; I = 0) =constant. ( h )  Equidensity 

I I 1 I : lines at I = 0 for a section xz = x i  + 3  parallel to the 
- 4  0 4 8 l 2  wall, M ( x 2  = x,  + 3 ,  x,; I = O )  =constant. ( c )  Shock 

profiles with one, two and three shocks connecting 
two, three and four plateaus, respectively. 

mo \ \ 

X> 

(CI 

For sections perpendicular to the wall, let us choose the simplest one, x2 + x, = 0, 
with the x3 axis belonging to the wall. At r = O  we have M = 
m,+ m ( 1  + 1/[1 +exp(yx,)]} and the equidensity lines M = M ( x , )  are perpendicular 
to the wall. 

4. p-dimensional solutions for the 2p-velocity hypercubic model 

For this model with 2 p  velocities u 2 q - l  + u2q = 0,  q = 1,2, ,  . . . , p ,  with u21,-1 along the 
positive xq axis of a p-dimensional space x, , x?, . . . x p ,  the equations for the 2 p  densities 
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N,,  i =  1 , .  . . , 2 p ,  are 

N 2 q - i r  + N~q-ir , ,  = N2qr -N~qr , ,  

= - ( p -  l)NZq-I NZq + N2k-l N2k = O  q =  1 ,  * .  . , p -  1 
I f 4  

(4.1) 

N Z p - l r + N ~ p - l r l , = N ~ p r - N ~ p , ,  = -  ( p  T' ( N z k - l r + N ~ k - I x , ) )  

which reduce to (2.1) for p = 2 and ( 3 . 1 )  for p = 3. 
We start with an ansatz which is an obvious generalisation of both (2.2) and ( 3 . 2 ) :  

N2q- l  = no, + n ,  ( c 1 / Q )  + H ~ ~ - I / D ~  Dh = 1 d ex p( pf + yXk ) 
k # q  

(4.2) 

N 2 4 = n o 2 + n l (  1 / 4 ) + n 2 , / D q  q = 1 , 2  ) . . . )  p d > 0 .  
! -#q 

The conditions N I  = N 3 ,  N ,  = N 4  for a specular reflection at an  hyperplane x, = x2 are 
satisfied. Substituting (4.2) into (4.1) we write down the relations for the coefficients 
of OF', D i 2  : 

n,p = n2p- ln2p  - n: = n l ( n o l  + no?) - n2p-ln0z- nZpnOl 

n,,-,(p + Y )  = nz,(P - Y )  = -(P - 1 ) % p .  

(4 .3a)  

Again, the constants in the collision terms of (4.1) vanish while the coefficients of 
( D k D k , ) - l ,  k # k'  give a new relation 

(4.3b) 

We still have seven parameters n,,  no,, p, y and five relations leaving two arbitrary 
parameters. Frequency p and wavenumber y are known from the n, which satisfy a 
second relation 

nZP-'  + nZp  = 2n , .  

Y = P(nzp - n2,-,)/2n, P = - P I  n2pn2p-l  = - ( p  - 1 ) n f .  (4.4) 
For the construction of the solutions we define ri, = n , / n ,  , i = 2p - 1 and 2p, choose 

(4.5) 

A2p-l  = 1 +G, ri,, = 1 +G and assume for the arbitrary parameters 

no, > no, > 0. 

We obtain for the other parameters: 

f i n ,  = no, - no, > o 
n2,,-' = ( I  + ~ I f i ) ( n ~ ~ - n ~ ~ ) > ~  

P = fi( no, - no21 < 0 

n z , = ( l / G - l ) ( n o , - n o l ) < O  

y = - d j p > o  c = p l y  = - 1 1 4  I C /  < 1 .  

We still find that the N I  with i odd are sums of positive terms while for i even they 

We introduce the total mass M = Z N ,  : 

M = m o + m c l / D ,  

M O  = d n o l  + noz)  > 0 m = 2 p n , = 2 ~ ( n 0 , - n o l ) > ~  (4.6) 

0, = 1 + d  exPEP(no*-no,)(x, -flG)l 

are also positive due  to their lower bound no2 + n2,/ D , 3  [no, + n o l ( d j  - 1 ) ] I 4  > 0. 

P 

I 

j = 1 , 2  , . . . ,  p. 
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In the p-dimensional space there exist 2” sectors corresponding to the different 
signs of the p coordinates xI, . . . , x,,. In these sectors the asymptotic limits are 
p-dimensional manifolds which are the extension of the two-dimensional plateaus of 
the 4u, model. There exist 2” such manifolds corresponding to the values inO, m,,+ m 
(ptimes),  mO+2m ( p ( p - l ) / 2 t i m e s )  , . . . ,  m , , + ( p - 1 ) m  (p t imes) ,m, ,+pm (like in a 
Pascal triangle for the coefficients of (1 + x)”) .  For the time dependence we still find 
the translation M(xl  , x2,  . . . , x,, ; t )  = M ( x ,  + ct, x,+ et, . . . , xp + ct ; 0). Finally all the 
results of Q 3 can be extended. In particular for equidensity manifolds M =constant 
we can write down x,, as a function of x i ,  . . . , x p - ,  with an expression which generalises 
(3.9). 

5. Conclusion 

In this paper, for the exact multidimensional solutions of the discrete Boltzmann 
models, two new advances have mainly been obtained. Namely the possibility for Z D  

solutions to satisfy specular reflection boundary conditions and the construction of 3~ 

solutions. However we have not yet found (3 + 1)-dimensional solutions. 
The difficulty for (3 + 1)-dimensional soluLions is not yet at the level of positive 

solutions-it is at the very possibility of building such solutions. Counting arguments, 
unless miraculous identities occur, are not favourable. However, the present construc- 
tion of p-dimensional solutions for the hypercubic models is encouraging. 

In  the previously found (1  + 1)-dimensional solutions satisfying specular reflection 
(see [4] and references therein), the wall was at xI = 0 with boundary conditions only 
for two densities. Here, for the 4u, model, the solutions depend on two spatial 
coordinates and further the wall at x, = x2 requires boundary conditions for all the 
four densities. The presently constructed 3~ solutions, of the Broadwell model with 
specular reflection, are not the most general ones. However, due to the simplicity of 
the positivity proof, we have restricted our study to them. 
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